

PREAMBLE

On the completion of the BSc(IT) course, the students will :

- Have sound knowledge of the theory behind the concepts like Cloud computing, Security, Soft Computing Fundamentals, Natural Language Processing, IT in Forensic Science, Block Chain Technology etc.
- 2. Have sound skills in the field of Data science through Machine learning, Big Data Analytics, Web and Social data analytics
- 3. Be able to critically analyze, synthesize and solve complex unstructured business and real world problems with scientific approach.

PROGRAMME SPECIFIC OUTCOMES:-

- PSO1 : Demonstrate the knowledge of advanced IT concepts and apply them to develop a userfriendly, scalable and robust applications
- PSO2 : Exhibit higher order skills to adapt to the ever changing technological environment.
- PSO3: Create computer experts, who can be directly employed or start his/her own work as Web Designer, Database User, Programmer, Testing professional, Designer of a System and Network implementer, Data Scientist.
- PSO4: Make students competent to take up advanced level research in the field of technology..

<u>Semester I</u>

Course Code	Course Title	Credits
SIPSIT11	Advanced Security in Computing	4
SIPSIT12	Cloud Computing	4
SIPSIT13	Research Methodology	4
SIPSIT14	Big Data Analytics	4
SIPSITP11	Advanced Security in Computing Practical	2
SIPSITP12	Cloud Computing Practical	2
SIPSITP13	Research Methodology Practical	2
SIPSITP14	Big Data Analytics Practical	2
	TOTAL CREDITS	24

<u>Semester I</u>

Advanced Security in Computing

Course Objective:

- To offer complete coverage of all aspects of computer security
- To identify computer and network security threats, classify the threats and develop a security model to prevent, detect and recover from the attacks and ensure privacy.

Course Outcome:

CO1: Detect potential security vulnerabilities and Explain cryptography, Cyber Forensics.

CO2: Demonstrate ways of recovering from the effects of attacks and Examine security countermeasures.

M. Sc (Information Technology)	Semester – I - SIPSIT11
Course Name	Advanced Security in Computing
Periods per week (1 Period is 60 minutes)	4
Credits	4

Unit	Contents	
I	Introduction: The Need for Security, Challenges and Basic Approaches, Threats, vulnerabilities, and controls, Confidentiality, integrity and availability, Attackers and attack types; method, opportunity, and motive, Valuing assets	12
П	Toolbox: Authentication, Access Control, and Cryptography. Programs and Programming: - Unintentional (Non-malicious) Programming Oversights, Malicious Code - Malware, Countermeasures.	12
III	 The Web—User Side:- Browser Attacks, Web Attacks Targeting Users, Email Attacks, Ransomeware. Rootkit :- Phone Rootkit, Rootkit Evades Detection, Rootkit Operates Unchecked, Sony XCP Rootkit, TDSS Rootkits 	12
IV	Networks: Network Concepts ,War on Networks: Network Security Attacks, Wireless Network Security, Denial of Service, Distributed Denial-of-Service. Strategic Defenses: Security Countermeasures :- Cryptography in Network Security, Firewalls ,Intrusion Detection and Prevention Systems.	12

V	 Privacy:- Privacy Concepts, Authentication and Privacy ,Email Security. Computer Crime ,Ethical Issues in Computer Security. Cryptography :-Message Digests, Digital Signatures, Cyber Warfare. Cyber Forensics:-Introduction to Cyber Forensics, Handling Preliminary Investigations, Controlling an Investigation, Conducting disk-based analysis, Investigating Information-hiding, Scrutinizing E-mail, Validating E-mail header information, Tracing Internet access, Tracing memory in real-time. 	12
---	---	----

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Security in Computing	Charles P. Pfleeger Shari Lawrence Pfleeger Jonathan Margulies	Pearson Education	Fifth edition	2015
2	Security in Computing Systems :Challenges, Approaches and Solutions	Prof. Dr. Joachim Biskup	Springer		2009
3	Principles of Computer Security	Vincent Nestler and Keith Harrison and Matthew Hirsch and Wm. Arthur Conklin	Mc Graw Hill	Fourth Edition	2015

Internal Evaluation: 40 Marks

20 Marks	20 Marks	
Class Test	Any relevant course with' SWAYAM- NPTEL'	

Practical Component:

M. Sc (Information Technology)	Semester – I -SIPSIT11
Course Name	Advanced Security in Computing Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical:

1	Learn Network Attacks Using Wireshark.	
2	Implementing Diffie Helman Key Exchange Algorithm.	
3	Implement web based exploitations.	
4	Implement Software based attacks.	
5	Implement AES.	
6	Implement RSA Algorithm.	
7	Implement Blowfish.	
8	Perform a simple MITM attack on local network using ARP Spoofing.	
9	Detect and Prevent Malware Free Attacks with CrowdStrike Falcon.	
10	Tools to perform Behavioural Analysis of Malware:-	
	1.Process Hacker	
	2. Process Monitor (ProcMon)	
	3. CaptureBat	
	4. Microsoft Network Monitor	
	5. Autoruns	

Cloud Computing

Course Objective:

The student will learn about the cloud environment, building software systems and components that scale to millions of users in modern internet, cloud concepts capabilities across the various cloud service models including Iaas,Paas,Saas, and developing cloud based software applications on top of cloud platforms.

Course Outcome:

- CO1: Explain Cloud Computing and memorize the different Cloud service and deployment models.
- CO2: Describe various virtualization technologies with its utilization.
- CO3: Explain cloud management services through System Center with its components.

M. Sc (Information Technology)	Semester – I - SIPSIT12
Course Name	Cloud Computing
Periods per week (1 Period is 60 minutes)	4
Credits	4

Unit	Contents	
Ι	Defining Cloud Computing : Define Cloud Computing, Cloud Types, The NIST model, The Cloud Cube Model, Deployment models, Service models, Examining the Characteristics of Cloud Computing, Paradigm shift, Benefits of cloud computing, Disadvantages of cloud computing, Understanding Services and Applications by Type: Defining Infrastructure as a Service (IaaS), Defining Platform as a Service (PaaS), Defining Software as a Service (SaaS), Defining Identity as a Service (IDaaS), Defining Compliance as a Service (CaaS)	12
II	 Understanding Virtualization: Using Virtualization Technologies, Load Balancing and Virtualization, Understanding Hypervisors, Understanding Machine Imaging, Porting Applications Virtual Machines Provisioning and Migration Services: Virtual Machines Provisioning and Manageability, Virtual Machine Migration Services, VM Provisioning and Migration in Action, Provisioning in the Cloud Context 	12

	Secure Distributed Data Storage in Cloud Computing: Cloud Storage: from LANs TO WANs, Technologies for Data Security in Cloud Computing.	
ш	Cloud Management : System Center and the Cloud OS, Provisioning infrastructure with Virtual Machine Manager	12
IV	Configuration Manager & DPM: Managing and maintaining with Configuration Manager, Backup and recovery with Data Protection Manager	12
V	Operations Manager, Service Manager, Orchestrator : Real-time monitoring with Operations Manager, Standardization with Service Manager, Automation with Orchestrator	12

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Cloud Computing Bible	Barrie Sosinsky	Wiley-India		2010
2	Cloud Computing: Principles and Paradigms	Rajkumar Buyya, James Broberg ,Andrzej M. ,Goscinski,	Wiley		2011
3	Introducing Microsoft System Center 2012, Technical Overview	Mitch Tulloch, Symon Perriman	Microsoft		

Internal Evaluation: 40 Marks

20 Marks	20 Marks	
Class Test	Any relevant course with' SWAYAM-NPTEL'	

Practical Component:

M. Sc (Information Technology)	Semester – I - SIPSITP12
Course Name	Cloud Computing Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practicals:

1	Creating Failover Clustering using Windows server.
2	Migration of VM's (using any VM)
3	Implement PaaS
4	Implement IaaS
5	Implementing ESXi Sever with Vsphere Client
6	Managing with SCVMM
7	Using Service Manager to Standardize.
8	Using Orchestrator for Automation.
9	Using Operations Manager for real-time monitoring.
10	Using Data Protection Manager for Backup and Recovery.

Research Methodology

Course Objective:

To develop the aptitude for research and the ability to explore research techniques to solve real world problems

Course Outcome:

- CO1: Critically analyze, synthesize and solve complex unstructured business and real world problems with scientific approach.
- CO2: Develop analytical skills by applying scientific methods.

M. Sc (Information Technology)	Semester – I - SIPSIT13
Course Name	Research Methodology
Periods per week (1 Period is 60 minutes)	4
Credits	4

Unit	Contents	No. of Lectures
I	Introduction to Research: Objectives of research, Types of Research, Research approaches, Research methods versus methodology, Research Process. Formulation of the research problem: Selecting the problem, Technique involved in defining a problem.	12
п	Research Design: Meaning, Need and Features of a research design, Different research designs, Basic principles of Experimental Designs, Sampling Design: Implications and Steps in Sampling Design, Types of Sampling Designs.	12
ш	Data Collection Methods: Primary data and Secondary data, Processing and Analysis of Data, Statistics in research, Sampling theory, Concept of Standard Error, Estimation, Sample size and its determination	12
IV	Testing of hypotheses: Procedure and flow diagram for hypothesis testing, Parametric Tests, Chi-Square Test, Analysis of Variance and Covariance, Non-parametric tests	12
V	Multivariate analysis techniques: Classification, Variables, Factor Analysis, Path Analysis, Interpretation and Report Writing :Technique and Precaution in interpretation, Report Writing, Layout of the Research report, Types of Report, Writing a Research report, Use of tools/techniques for research	12

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Research Methodology – Methods and Techniques	C.R.Kothari, Gaurav Garg	New Age	4e	
2	Research Methodology – a step by step guide for beginners	Ranjit Kumar	Sage Publications	3e	2011
3	Research Methodology	Panneerselvam	PHI Learning	2e	2014
4	Business Research Methods	William G.Zikmund, B.J Babin, J.C. Carr, Atanu Adhikari, M.Griffin	Cengage	8e	2016
5	Business Research Methods	Alan Bryman and Emma Bell	Oxford University Press	Зе	2011

Internal Evaluation: 40 Marks

20 Marks	20 Marks	
Class Test	Research paper publication	

Practical Component:

M. Sc (Information Technology)	Semester I - SIPSIT13
Course Name	Research Methodology Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical: (Using Google scholar/SPSS/Mendeley/End note etc)

1	Defining a research problem
2	Literature Review using search tools like google scholar
3	Research design
4	Sampling Design
5	Usage of measurement and scaling techniques
6	Testing of Hypothesis

7	Implement data analysis techniques
8	Writing a research report

Big Data Analytics

Course Objective:

The main goal of this course is to help students learn, understand, and practice big data analytics approaches, which include the conceptualization and summarization of big data and machine learning, and big data computing technologies.

Course Outcome:

CO1: Comprehend the difference between traditional and Big Data approach.

- CO2: Analyze data using various clustering algorithms and classification algorithms.
- CO3: Understand the Hadoop Architecture and make out the importance of NoSQL and role of MapReduce.

M. Sc (Information Technology)	Semester – I -SIPSIT14
Course Name	Big Data Analytics
Periods per week (1 Period is 60 minutes)	4
Credits	4

Unit	Contents	
I	Introduction: Introduction to Big Data, Big Data Characteristics, Types of Big Data, Traditional Versus Big Data Approach, Technologies Available for Big Data, Infrastructure for Big Data, Use of Data Analytics, Big Data Challenges, Desired Properties of a Big Data System, Case Study of Big Data Solutions	12
п	Analytical Theory and Methods: Clustering and Associated Algorithms, Association Rules, Apriori Algorithm, Candidate Rules, Applications of Association Rules, Validation and Testing, Diagnostics, Regression, Linear Regression, Logistic Regression, Additional Regression Models.	12
ш	Analytical Theory and Methods: Classification, Decision Trees, Naïve Bayes, Diagnostics of Classifiers, Additional Classification Methods, Time Series Analysis, Box Jenkins methodology, ARIMA Model, Additional methods. Text Analysis, Steps, Text Analysis Example, Collecting Raw Text, Representing Text, Term Frequency-Inverse Document Frequency (TFIDF), Categorizing Documents by Topics, Determining Sentiments	12

IV	 Hadoop: Introduction, What is Hadoop?, Core Hadoop Components, Operating System for Big Data, Concepts, Hadoop Architecture, Hadoop Ecosystem, Hive, , Hadoop Limitations 	
V	NoSQL: What is NoSQL?, NoSQL Business Drivers, NoSQL Case Studies, NoSQL Data Architectural Patterns, Variations of NoSQL Architectural Patterns, Using NoSQL to Manage Big Data Map Reduce: MapReduce and The New Software Stack, MapReduce, Algorithms Using MapReduce	12

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Big Data Analytics	Radha Shankarmani	Wiley		
2	Big Data and Analytics	Subhashini Chellappan Seema Acharya	Wiley	First	
3	Big Data Analytics with R and Hadoop	Vignesh Prajapati	Packt	First	
4	Practical Big data Analytics	Nataraj Dasgupta	Pack	First	
5	Big Data Analytics	Anuradha Bhatia			

Internal Evaluation: 40 Marks

20 Marks	20 marks
Class Test	Project / Analysis of research papers

Practical Component:

M. Sc (Information Technology)	Semester – I -SIPSITP14
Course Name	Big Data Analytics Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical:

1	Installation of HADOOP
2	Implement the following file management tasks in Hadoop System (HDFS): Adding files
	and directories, Retrieving files, Deleting files
3	Basic CRUD operations in MongoDB
4	Implement programs related to MapReduce
4	Implement clustering and associated algorithms
6	Implement Linear Regression
7	Implement Bloom Filters for filter on Stream Data
8	Implement Time Series

<u>Semester II</u>

Course Code	Course Title	Credits
SIPSIT21	Soft Computing Fundamentals	4
SIPSIT22	Digital Image Processing	4
SIPSIT23	Introduction to Data Science	4
SIPSIT24	.NET Core	4
SIPSITP21	Soft Computing Fundamentals Practical	2
SIPSITP22	Digital Image Processing Practical	2
SIPSITP23	Introduction to Data Science Practical	2
SIPSITP24	.NET Core Practical	2
	24	

Semester II

Soft Computing Fundamentals:

Course Objective:

- Soft Computing is a consortium of methodologies which collectively provide the concepts and techniques for designing intelligent systems.
- To introduce the techniques of soft computing and adaptive neuro-fuzzy inferencing systems which differ from conventional AI and computing in terms of its tolerance to imprecision and uncertainty.

Course Outcome:

- CO1: Describe about the fuzzy logic involved in various systems.
- CO2: Examine the fundamental theory and concepts of neural networks and identify different neural network architectures and algorithms.
- CO3: Discuss Genetic algorithms with its different architecture.

M.Sc (Information Technology)	Semester – II - SIPSIT21
Course Name	Soft Computing Fundamentals
Periods per week (1 Period is 60 minutes)	4
Credits	4

Unit	Contents	No. of Lectures
I	Introduction to Soft Computing: Concept of computing systems, "Soft" computing versus "Hard" computing, Characteristics of Soft computing, Some applications of Soft computing techniques. Fuzzy logic: Introduction to Fuzzy logic, Fuzzy sets and membership function, Operations on Fuzzy sets.	
п	Fuzzy logic: Fuzzy relations, rules, propositions, implications and inferences, Defuzzification techniques. Fuzzy logic controller design, Some applications of Fuzzy logic. Genetic Algorithms: Biological Background, Traditional optimization and search techniques, genetic algorithm and search space, genetic algorithm vs. traditional algorithms, basic terminologies, simple genetic algorithm, general genetic algorithm, operators in genetic algorithm, stopping condition for genetic algorithm flow, constraints in genetic algorithm,	12

ш	 Problem solving using genetic algorithm, the schema theorem, classification of genetic algorithm, Holland classifier systems, genetic programming, advantages and limitations and applications of genetic algorithm. Concept of multi-objective optimization problems (MOOPs) and issues of solving them. 	
IV	Artificial Neural Networks : What is Neural Network, Learning rules and various activation functions, Single layer Perceptron, Back Propagation networks, Architecture of Backpropagation(BP) Networks, Backpropagation Learning, Variation of Standard Back propagation Neural Network, Introduction to Associative Memory, Adaptive Resonance theory and Self Organizing Map, Recent Applications.	12
v	 Special Networks: Simulated annealing, Boltzmann machine, Gaussian Machine, Cauchy Machine, Probabilistic neural net, cascade correlation network, cognition network, neo-cognition network, cellular neural network, optical neural network Third Generation Neural Networks: Spiking Neural networks, convolutional neural networks, deep learning neural networks, extreme learning machine model. 	12

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Fuzzy Logic with Engineering Applications	Timothy J. Ross	Wiley	3 rd	
2	Introduction to Genetic Algorithms	S.N Sivanandam and S.N. Deepa	Springer		
3	Principles of Soft Computing	S.N.Sivanandam, S.N.Deepa	Wiley	2nd	
4	Genetic Algorithms: Search, Optimization and Machine Learning	Davis E.Goldberg	Addison Wesley		
5	An Introduction to Genetic Algorithm	Melanic Mitchell	MIT Press		
6	Evolutionary Algorithm for Solving Multi-objective, Optimization Problems	Collelo, Lament, Veldhnizer	Springer	2nd	
7	Neural Networks and Learning Machines	Simon Haykin	PHI		

Internal Evaluation: 40 Marks

20 Marks	20 Marks
Class Test	Any relevant course with SWAYAM-NPTEL

Practical Component:

M. Sc (Information Technology)	Semester – II - SIPSITP21
Course Name	Soft Computing Fundamentals Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical:

1	Implementation of Fuzzy operations using JAVA/C/C++/MATLAB
2	Implementation of Fuzzy Relations(Max-Min composition) using JAVA/C/C++/MATLAB
3	Implementation of Fuzzy controller(Washing machine) using JAVA/C/C++/MATLAB
4	To implement Mc-Culloch pits Model using XOR using JAVA/C/C++/MATLAB
5	Implementation of Single layer Perceptron Learning Algorithm using JAVA/MATLAB
6	Implementation of unsupervised learning algorithm – Hebbian Learning using JAVA/MATLAB
7	Implementation of simple Genetic Application – Match Word Finding using JAVA/MATLAB
8	Implement TSP using GA

Digital Image Processing

Course Objective:

- To cover the basic theory and algorithms that are widely used in digital image processing,
- To expose students to current technologies and issues that are specific to image processing systems
- To develop skills in using computers to process images.

Course Outcome:

- CO1: Review the fundamental concepts of a digital image processing system.
- CO2: Analyse images in the frequency domain using various transforms and evaluate the techniques for image enhancement and image restoration.
- CO3: Make extensive use of these concepts in implementing processing techniques such as noise removal, enhancement, compression for efficient storage and transmission, object extraction, representation and description for recognition or building computer vision, etc.

M. Sc(Information Technology)	Semester - II - SIPSIT22
Course Name	Digital Image Processing
Periods per week (1 Period is 60 minutes)	4
Credits	4

Unit	Contents	No. of Lectures
I	 Introduction: Digital Image Processing, Origins of Digital Image Processing, Applications and Examples of Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System Digital Image Fundamentals: Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization, Basic Relationships Between Pixels, Basic Mathematical Tools Used in Digital Image Processing 	12
п	Image Enhancement in spatial domain: Basics, Basic Intensity Transformation Functions, Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing (Lowpass) Spatial Filters, Sharpening (Highpass) Spatial Filters, Highpass, Bandreject, and Bandpass Filters from Lowpass Filters, Combining Spatial Enhancement Methods, Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering	12

	Filtering in the Frequency Domain: Background, Preliminary	
	Concepts, Sampling and the Fourier Transform of Sampled Functions,	
	The Discrete Fourier Transform of One Variable, Basics of Filtering in	
	the Frequency Domain, Image Smoothing Using Lowpass Frequency	
	Domain Filters, Image Sharpening Using Highpass Filters, Selective	
	Filtering, Fast Fourier Transform	
	Image Restoration and Reconstruction: A Model of the Image	
	Degradation/Restoration Process, Noise Models, Restoration in the	
	Presence of Noise OnlySpatial Filtering, Periodic Noise Reduction	
III	Using Frequency Domain Filtering, Linear, Position-Invariant	12
	Degradations, Estimating the Degradation Function, Inverse Filtering,	
	Minimum Mean Square Error (Wiener) Filtering, Constrained Least	
	Squares Filtering, Geometric Mean Filter, Image Reconstruction from	
	Projections	
	Color Image Processing: Color Fundamentals, Color Models,	
	Pseudocolor Image Processing, Full-Color Image Processing, Color	
	Transformations, Color Image Smoothing and Sharpening, Using	
	Color in Image Segmentation, Noise in Color Images, Color Image	
IV	Compression.	12
	Image Compression: Fundamentals, Huffman Coding, Golomb	
	Coding, Arithmetic Coding, LZW Coding, Run-length Coding,	
	Symbol-based Coding, 8 Bit-plane Coding, Block Transform Coding,	
	Predictive Coding, Wavelet Coding	
	Morphological Image Processing: Preliminaries, Erosion and	
	Dilation, Opening and Closing, The Hit-or-Miss Transform,	
	Morphological Algorithms, Morphological Reconstruction,	
	Morphological Operations on Binary Images, Grayscale Morphology	
v	Image Segmentation I: Edge Detection, Thresholding, and Region	12
, v	Detection: Fundamentals, Thresholding, Segmentation by Region	14
	Growing and by Region Splitting and Merging, Region Segmentation	
	Using Clustering and Superpixels, Region Segmentation Using Graph	
	Cuts, Segmentation Using Morphological Watersheds, Use of Motion	
	in Segmentation	
<u> </u>		

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Digital Image Processing	Gonzalez and Woods	Pearson/Pr entice Hall	Fourth	2018
2	Fundamentals of Digital Image Processing	A K. Jain	PHI		
3	The Image Processing Handbook	J. C. Russ	CRC	Fifth	2010

Internal Evaluation: 40 Marks

20 Marks	20 marks
Class Test	Project work in image processing

Practical Component:

M. Sc (Information Technology)	Semester - II - SIPSITP22
Course Name	Digital Image Processing Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical:

1		WAP to study the effects of reducing the quantization values and spatial		
-		Resolution		
2		Image enhancement		
	А	Thresholding		
	В	Contrast adjustment		
	С	Brightness adjustment		
	D	Gray level slicing		
3		Basic Transformations		
	Α	Log transformation		
	В	Power law transformation		
	С	Negation		
4	A	Different Filters (LPF, HPF, Lapalcian, LOG etc.) $h_{g}(n_{1}, n_{2}) = e^{-(n_{1}^{2} + n_{2}^{2})/(2\sigma^{2})} \text{ ig formula.}$ $h(n_{1}, n_{2}) = \frac{(n_{1}^{2} + n_{2}^{2} - 2\sigma^{2})h_{g}(n_{1}, n_{2})}{2\pi\sigma^{6}\sum_{n_{1}}\sum_{n_{2}}h_{g}}$		
	В	Write a program to apply a mask on the image.		
		a. Accept the size of mask from the user.		
		b. Check whether the mask is of odd size.		
		c. The program should work for any high pass and low pass mask.		

	d. Check the sum of all the elements of the mask. For low pass filter the sum should be one and zero for high pass filter.		
	e. Compare the output for different size of masks.		
5	a. Write a program to plot a Histogram and apply histogram equalizationb. Write a program to apply bit plane slicing		
6	 Write a program to apply Gaussian filter on an image. a. Write a code to generate a Gaussian mask and then apply the mask on the image. b. Accept the size of mask and the sigma value from the user to generate a mask. c. Use the following formula to generate Gaussian mask. h_g(n₁,n₂) = e^{-(n_1^2 + n_2^2)/(2\sigma^2)} h(n₁,n₂) = h_g(n₁,n₂)/(2\sigma^2) h_g(n₁,n₂) = h_g(n₁,n₂)/(2\sigma^2) 		
7	1.Apply following morphological operations on the image:		
/	a. Opening		
	b. Closing		
	c. Morphological gradient		
	d. Top-hat transformation		
8	2. Write a program for boundary detection.1.WAP to show RGB planes		
0	2. WAP to convert		
	a. RGB to NTSC		
	b. RGB to YCbCr		
	c. RGB to CMY		
	d. RGB to HIS		
9	WAP to achieve Pseudo coloring		

Introduction to Data Science

Course Objective:

- To develop the skill sets needed to be a data scientist.
- To understand Statistical Inference and identify probability distributions commonly used as foundations for statistical modeling.

Course Outcome:

- CO1: Describe data science layered framework and the different kinds of supersteps.
- CO2: Use R language to carry out basic statistical modeling and analysis.
- CO3: Apply basic machine learning algorithms (Linear Regression, k-Nearest Neighbors (k-NN), k-means, Naive Bayes) for predictive modeling.

M. Sc (Information Technology)	Semester – II - SIPSIT23
Course Name	Introduction to Data Science
Periods per week (1 Period is 60 minutes)	4
Credits	4

Unit	Contents	
I	 Data Science Technology Stack : Rapid Information Factory Ecosystem, Data Science Storage Tools, Data Lake, Data Vault, Data Warehouse Bus Matrix, Data Science Processing Tools Layered Framework : Definition of Data Science Framework, Cross-Industry Standard Process for Data Mining (CRISP-DM), Homogeneous Ontology for Recursive Uniform Schema, The Top Layers of a Layered Framework, Layered Framework for High-Level Data Science and Engineering Business Layer: Business Layer, Engineering a Practical Business Layer Utility Layer: Basic Utility Design, Engineering a Practical Utility Layer 	12
Π	Three Management Layers: Operational Management Layer, Audit,Balance, and Control Layer, Functional Layer	
III	Retrieve Superstep : Data Lakes, Data Swamps, Training the Trainer Model, Understanding the Business Dynamics of the Data Lake, Actionable Business Knowledge from Data Lakes, Engineering a Practical Retrieve Superstep, Connecting to Other Data Sources	

IV	 Assess Superstep: Assess Superstep, Errors, Analysis of Data, Practical Actions, Engineering a Practical Assess Superstep, Process Superstep : Data Vault, Time-Person-Object-Location-Event Data Vault, Data Science Process 	12
V	 Transform Superstep : Transform Superstep, Building a Data Warehouse, Transforming with Data Science, Hypothesis Testing, Overfitting and Underfitting, Precision-Recall, Cross-Validation Test. Univariate Analysis, Bivariate Analysis, Multivariate Analysis, Linear Regression, Logistic Regression, Clustering Techniques, ANOVA, Principal Component Analysis (PCA), Decision Trees, Support Vector Machines, Networks, Clusters, and Grids, Data Mining, Pattern Recognition, Machine Learning, Bagging Data,Random Forests, Computer Vision (CV), Natural Language Processing (NLP), Neural Networks, TensorFlow. Organize and Report Supersteps : Organize Superstep, Report Superstep, Graphics, Pictures, Showing the Difference 	12

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Practical Data Science	Andreas François Vermeulen	APress	1st	2018
2	Doing Data Science	Cathy O'Neil and Rachel Schutt.	O'Reilly	1st	2014
3	Practical Data Science with R	Nina Zumel John Mount	Manning Publication	1 st	2014

Internal Evaluation: 40 Marks

20 Marks	20 Marks
Class Test	Any relevant course with SWAYAM - NPTEL

Practical Component:

M. Sc (Information Technology)	Semester – II - SIPSITP23
--------------------------------	---------------------------

Course Name	Introduction to Data Science Practicals
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical:

1	Perform Linear Regression on any given data – Simple and Multiple Linear Regression		
2	Perform classification on any given data – Logistic Regression and Discriminant		
4	Analysis.		
3	Generate unique sampling distribution – Bootstrapping and Cross validation.		
	Implement methods that can provide better prediction accuracy and model		
4	interpretability for fitting linear models- Subset Selection, Best-Subset Selection,		
	Forward Stepwise Selection, Backward Stepwise Selection, and Hybrid Methods.		
5	Perform Shrinkage approach to fit a model involving all predictors – Ridge Regression		
5	and Lasso.		
6	Implement dimension reduction by 2 approaches – Principal Component Regression and		
6	Partial Least Squares.		
7	Implement a nonlinear regression using the following techniques – Step function,		
/	Piecewise function, Spline function and Generalized Additive Model.		
8 Perform regression and classification using Tree based methods – Bagging, B Random Forest.			
		9	Implement Supervised Learning Model using Support Vector Machine.
10	Implement Unsupervised Learning using the following algorithms – Principal		
10	Component Analysis, k-Means Clustering, and Hierarchical Clustering.		

.NET Core

Course Objective:

ASP.NET MVC has many features that enable fast and testing-friendly approach used for creating polished online services which use advanced web standards.

Course Outcome:

- CO1: Design microservice systems and adopt microservices in practice.
- CO2: Build microservices with ASP.NET Core and create Data service and implement event sourcing and CQRS.
- CO3: Configure microservices ecosystems using environment variables with docker, spring cloud config server and etcd.
- CO4: Implement Security in cloud, ASP.NET Core Web Apps, ASP.NET Core microservices and build real time Apps and services.

M. Sc (Information Technology)	Semester – II - SIPSIT24
Course Name	.NET Core
Periods per week (1 Period is 60 minutes)	4
Credits	4

Unit	Contents		
I	 Microservices: Understanding Microservices, Adopting Microservices, The Microservices Way Microservices Value Proposition: Deriving Business Value, Defining a Goal-Oriented, Layered Approach, Applying the Goal-Oriented, Layered Approach Designing Microservice Systems: The Systems Approach to Microservices, A Microservices Design Process Establishing a Foundation: Goals and Principles, Platforms, Culture 	12	
п	 Service Design: Microservice Boundaries, API design for Microservices, Data and Microservices, Distributed Transactions and Sagas, Asynchronous Message-Passing and Microservices, Dealing with Dependencies System Design and Operations: Independent Deployability, More Servers, Docker and Microservices, Role of Service Discovery, Need for an API Gateway, Monitoring and Alerting 	12	

	Adopting Microservices in Practice: Solution Architecture Guidance,			
	Organizational Guidance, Culture Guidance, Tools and Process			
	Guidance, Services Guidance			
	Building Microservices with ASP.NET Core: Introduction, Installing			
	.NET Core, Building a Console App, Building ASP.NET Core App			
	Delivering Continuously: Introduction to Docker, Continuous			
	integration with Wercker, Continuous Integration with Circle CI,			
	Deploying to Dicker Hub			
III	Building Microservice with ASP.NET Core: Microservice, Team	12		
	Service, API First Development, Test First Controller, Creating a CI			
	pipeline, Integration Testing, Running the team service Docker Image.			
	Backing Services: Microservices Ecosystems, Building the location			
	Service, Enhancing Team Service			
	Creating Data Service: Choosing a Data Store, Building a Postgres			
	Repository, Databases are Backing Services, Integration Testing Real			
	Repositories, Exercise the Data Service			
	Event Sourcing and CQRS: Event Sourcing, CQRS pattern, Event			
IV	Sourcing and CQRS, Running the samples	12		
ТV	Building an ASP.NET Core Web Application: ASP.NET Core	14		
	Basics, Building Cloud-Native Web Applications			
	Service Discovery: Cloud Native Factors, Netflix Eureka, Discovering			
	and Advertising ASP.NET Core Services. DNS and Platform Supported			
	Discovery			
	Configuring Microservice Ecosystems: Using Environment Variables			
	with Docker, Using Spring Cloud Config Server, Configuring			
	Microservices with etcd,			
	Securing Applications and Microservices: Security in the Cloud, Securing ASP.NET Core Web Apps, Securing ASP.NET Core			
v	Microservices	12		
v	Building Real-Time Apps and Services: Real-Time Applications	14		
	Defined, Websockets in the Cloud, Using a Cloud Messaging Provider,			
	Building the Proximity Monitor.			
	Putting It All Together: Identifying and Fixing Anti-Patterns,			
	Continuing the Debate over Composite Microservices, The Future			

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Microservice Architecture: Aligning Principles, Practices, and Culture	Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen	O'Reilly	1 st	2016
2	Building Microservices with ASP.NET Core	Kevin Hoffman	O'Reilly	1 st	2017

3	Building Microservices	Sam Newman	O'Reilly	1st	2015
---	-------------------------------	------------	----------	-----	------

Internal Evaluation: 40 Marks

20 Marks	20 Marks
Class Test	A project work using .NET Core

Practical Component:

M. Sc (Information Technology)	Semester – II - SIPSITP24
Course Name	.Net Core Practicals
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical:

Implement any 10 Practical relevant to .NET Core.